Semiparametric model for covariance regression analysis
Jin Liu,
Yingying Ma and
Hansheng Wang
Computational Statistics & Data Analysis, 2020, vol. 142, issue C
Abstract:
Estimating covariance matrices is an important research topic in statistics and finance. A semiparametric model for covariance matrix estimation is proposed. Specifically, the covariance matrix is modeled as a polynomial function of the symmetric adjacency matrix with time varying parameters. The asymptotic properties for the time varying coefficient and the associated semiparametric covariance estimators are established. A Bayesian information criterion to select the order of the polynomial function is also investigated. Simulation studies and an empirical example are presented to illustrate the usefulness of the proposed method.
Keywords: Adjacency matrix; Covariance estimation; Covariance regression; Information criterion; Time varying coefficient (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319301628
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:142:y:2020:i:c:s0167947319301628
DOI: 10.1016/j.csda.2019.106815
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().