EconPapers    
Economics at your fingertips  
 

Generalized ℓ1-penalized quantile regression with linear constraints

Yongxin Liu, Peng Zeng and Lu Lin

Computational Statistics & Data Analysis, 2020, vol. 142, issue C

Abstract: In many application areas, prior subject matter knowledge can be formulated as constraints on parameters in order to get a more accurate fit. A generalized ℓ1-penalized quantile regression with linear constraints on parameters is considered, including either linear inequality or equality constraints or both. It allows a general form of penalization, including the usual lasso, the fused lasso and the adaptive lasso as special cases. The KKT conditions of the optimization problem are derived and the whole solution path is computed as a function of the tuning parameter. A formula for the number of degrees of freedom is derived, which is used to construct model selection criteria for selecting optimal tuning parameters. Finally, several simulation studies and two real data examples are presented to illustrate the proposed method.

Keywords: Degrees of freedom; Generalized lasso; KKT conditions; Linear programming; Quantile regression (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319301665
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:142:y:2020:i:c:s0167947319301665

DOI: 10.1016/j.csda.2019.106819

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:142:y:2020:i:c:s0167947319301665