EconPapers    
Economics at your fingertips  
 

A nonparametric feature screening method for ultrahigh-dimensional missing response

Xiaoxia Li, Niansheng Tang, Jinhan Xie and Xiaodong Yan

Computational Statistics & Data Analysis, 2020, vol. 142, issue C

Abstract: This paper addresses the feature screening issue for ultrahigh-dimensional data with responses missing at random. A novel nonparametric feature screening procedure is developed to identify the important features via the conditionally imputing marginal Spearman rank correlation. The proposed nonparametric screening approach has several desirable merits. First, it is nonparametric without assuming any regression form of predictors on response variable. Second, it is robust to outliers and heavy-tailed data. Third, under some regularity conditions, it is shown that the proposed feature screening procedure has the sure screening and ranking consistency properties. Simulation studies evidence that the proposed screening procedure outperforms several existing model-free screening procedures. An example taken from the microarray diffuse large-B-cell lymphoma study is used to illustrate the proposed methodologies.

Keywords: Feature screening; Imputation; Marginal Spearman rank correlation; Missing at random; Ultrahigh-dimensional data (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319301756
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:142:y:2020:i:c:s0167947319301756

DOI: 10.1016/j.csda.2019.106828

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:142:y:2020:i:c:s0167947319301756