Generating random correlation matrices with fixed values: An application to the evaluation of multivariate surrogate endpoints
Alvaro Jóse Flórez,
Ariel Alonso Abad,
Geert Molenberghs and
Wim Van Der Elst
Computational Statistics & Data Analysis, 2020, vol. 142, issue C
Abstract:
When assessing surrogate endpoints in clinical studies under a causal-inference framework, a simulation-based sensitivity analysis is required, so as to sample the unidentifiable parameters across plausible values. To be precise, correlation matrices need to be sampled with only some of their entries identified from the data, known as the matrix completion problem. The positive-definiteness constraints are cumbersome functions involving all matrix entries, making this a challenging task. Some existing algorithms rely on sampling and then rejecting invalid solutions. A very efficient algorithm is built on previous work to generate large correlation matrices with some a prior fixed elements. The proposed methodology is applied to tackle a difficult problem in the surrogate marker field, namely, the evaluation of multivariate, potentially high-dimensional, surrogate endpoints. Whereas existing methods are limited to very low-dimensional surrogates, the new proposal is stable, fast, shows good properties, and is implemented in a user-friendly and freely available R package.
Keywords: Multiple surrogate evaluation; Partial correlation; Positive-definite matrix; Random correlation matrices; Simulation-based sensitivity analysis (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319301896
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:142:y:2020:i:c:s0167947319301896
DOI: 10.1016/j.csda.2019.106834
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().