EconPapers    
Economics at your fingertips  
 

Bayesian variable selection in non-homogeneous hidden Markov models through an evolutionary Monte Carlo method

Luigi Spezia

Computational Statistics & Data Analysis, 2020, vol. 143, issue C

Abstract: Hidden Markov models (HMMs) are dynamic mixture models applied to time series in order to classify the observations into a small number of homogeneous groups, to understand when change points occur, and to model data heterogeneity through the switching between subseries with different state-dependent parameters. In the most general case, HMMs have an unobserved Markov chain whose transition probabilities are time-varying and dependent on exogenous variables through multinomial logit functions. When many covariates are available it is worthwhile selecting the subsets of variables which might affect most each row of the transition matrices. A Bayesian method for the stochastic selection of subsets of covariates is proposed by developing a novel evolutionary Monte Carlo algorithm. The methodology is illustrated and shown to be effective by performing experiments and comparisons on both synthetic data sets and a real multivariate time series with covariates.

Keywords: Time-varying transition probabilities; State-dependent multivariate Normal observed process; Trigonometric separation strategy; Path sampling; Population MCMC; Ozone dynamics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319301951
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:143:y:2020:i:c:s0167947319301951

DOI: 10.1016/j.csda.2019.106840

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:143:y:2020:i:c:s0167947319301951