Ensemble quantile classifier
Yuanhao Lai and
Ian McLeod
Computational Statistics & Data Analysis, 2020, vol. 144, issue C
Abstract:
Both the median-based classifier and the quantile-based classifier are useful for discriminating high-dimensional data with heavy-tailed or skewed inputs. But these methods are restricted as they assign equal weight to each variable in an unregularized way. The ensemble quantile classifier is a more flexible regularized classifier that provides better performance with high-dimensional data, asymmetric data or when there are many irrelevant extraneous inputs. The improved performance is demonstrated by a simulation study as well as an application to text categorization. It is proven that the estimated parameters of the ensemble quantile classifier consistently estimate the minimal population loss under suitable general model assumptions. It is also shown that the ensemble quantile classifier is Bayes optimal under suitable assumptions with asymmetric Laplace distribution inputs.
Keywords: Binary classification; Extraneous noise variables; High-dimensional discriminant analysis; Pattern recognition and machine learning; Sparsity; Text mining (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731930204X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:144:y:2020:i:c:s016794731930204x
DOI: 10.1016/j.csda.2019.106849
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().