EconPapers    
Economics at your fingertips  
 

Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data

Pao-sheng Shen and Huichen Hsu

Computational Statistics & Data Analysis, 2020, vol. 144, issue C

Abstract: Doubly truncated data arise when a failure time T is observed only if it falls within a subject-specific, possibly random, interval [U,V], where U and V are referred to as left- and right-truncation times, respectively. In this article, we consider the problem of fitting semiparametric transformation regression models to doubly truncated data. Most of the existing approaches in literature, which adjust for double truncation in regression models, require independence between failure times and truncation times, which may not hold in practice. To relax the independence assumption to conditional independence given covariates, we consider a conditional likelihood approach and develop the conditional maximum likelihood estimators (cMLE) for the regression parameters and cumulative hazard function of models. Based on score equations for the regression parameter and the infinite-dimensional function, we propose an iterative algorithm for obtaining the cMLE. The cMLE is shown to be consistent and asymptotically normal. Simulation studies indicate that the cMLE performs well and outperforms the existing estimators when an independence assumption holds. Applications to an AIDS dataset is given to illustrate the proposed method.

Keywords: Double truncation; Semiparametric transformation model; Conditional independence; Conditional maximum likelihood (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319302178
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302178

DOI: 10.1016/j.csda.2019.106862

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302178