A two-piece normal measurement error model
Reinaldo B. Arellano-Valle,
Adelchi Azzalini,
Clécio S. Ferreira and
Karol Santoro
Computational Statistics & Data Analysis, 2020, vol. 144, issue C
Abstract:
In the context of measurement error models, the true unobservable covariates are commonly assumed to have a normal distribution. This assumption is replaced here by a more flexible two-piece normal distribution, which allows for asymmetry. After setting-up a general formulation for two-piece distributions, we focus on the case of the normal two-piece construction. It turns out that the joint distribution of the actual observations (the multivariate observed covariates and the response) is a two-component mixture of multivariate skew-normal distributions. This connection facilitates the construction of an EM-type algorithm for performing maximum likelihood estimation. Some numerical experimentation with two real datasets indicates a substantial improvement of the present formulation with respect to the classical normal-theory construction, which greatly compensates the introduction of a single parameter for regulation of skewness.
Keywords: Two-piece distributions; Two-piece normal distribution; Multivariate skew-normal distribution; Measurement error model; ECM algorithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731930218X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:144:y:2020:i:c:s016794731930218x
DOI: 10.1016/j.csda.2019.106863
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().