A novel Bayesian approach for variable selection in linear regression models
Konstantin Posch,
Maximilian Arbeiter and
Juergen Pilz
Computational Statistics & Data Analysis, 2020, vol. 144, issue C
Abstract:
A novel Bayesian approach to the problem of variable selection in multiple linear regression models is proposed. In particular, a hierarchical setting which allows for direct specification of a priori beliefs about the number of nonzero regression coefficients as well as a specification of beliefs that given coefficients are nonzero is presented. This is done by introducing a new prior for a random set which holds the indices of the predictors with nonzero regression coefficients. To guarantee numerical stability, a g-prior with an additional ridge parameter is adopted for the unknown regression coefficients. In order to simulate from the joint posterior distribution an intelligent random walk Metropolis–Hastings algorithm which is able to switch between different models is proposed. For the model transitions a novel proposal, which prefers to add a priori or empirically important predictors to the model and further tries to remove less important ones, is used. Testing the algorithm on real and simulated data illustrates that it performs at least on par and often even better than other well-established methods. Finally, it is proven that under some nominal assumptions, the presented approach is consistent in terms of model selection.
Keywords: Variable selection; Hierarchical Bayes; g-prior with ridge parameter; Model uncertainty; Metropolis–Hastings algorithm; Consistency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319302361
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302361
DOI: 10.1016/j.csda.2019.106881
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().