EconPapers    
Economics at your fingertips  
 

Model checks for functional linear regression models based on projected empirical processes

Feifei Chen, Qing Jiang, Zhenghui Feng and Lixing Zhu

Computational Statistics & Data Analysis, 2020, vol. 144, issue C

Abstract: The goodness-of-fit testing for functional linear regression models with functional responses is studied. A residual-marked empirical process-based test is proposed. The test is projection-based, which can well circumvent the curse of dimensionality. The test is omnibus against any global alternative hypothesis as it integrates over all projection directions in the unit ball. The weak convergence of the test statistic under the null hypothesis is derived and it is shown that the proposed test can detect the local alternative hypotheses distinct from the null hypothesis at the fastest possible rate of order O(n−1∕2). To reduce computational burden for critical value determination, a nonparametric Monte Carlo method is used, and simulation studies show the good performance of the proposed method in various scenarios. An ergonomics data set is analyzed for illustration.

Keywords: Functional linear models; Model checking; Residual-marked; Projected empirical processes (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731930252X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:144:y:2020:i:c:s016794731930252x

DOI: 10.1016/j.csda.2019.106897

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:144:y:2020:i:c:s016794731930252x