Corrected Mallows criterion for model averaging
Jun Liao and
Guohua Zou
Computational Statistics & Data Analysis, 2020, vol. 144, issue C
Abstract:
An important problem with model averaging approach is the choice of weights. The Mallows criterion for choosing weights suggested by Hansen (2007) is the first asymptotically optimal criterion, which has been used widely. In the current paper, the authors propose a corrected Mallows model averaging (MMAc) method based on F distribution in small sample sizes. MMAc exhibits the same asymptotic optimality as Mallows model averaging (MMA) in the sense of minimizing the squared errors. The consistency of the MMAc based weights tending to the optimal weights minimizing MSE is also studied. The authors derive the convergence rate of the new empirical weights. Similar property for MMA and Jackknife model averaging (JMA) by Hansen and Racine (2012) is established as well. An extensive simulation study shows that MMAc often performs better than MMA and other commonly used model averaging methods, especially for small and moderate sample size cases. The results from the real data analysis also support the proposed method.
Keywords: Asymptotic optimality; Consistency; Mallows criterion; Model averaging; Weight choice (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319302579
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302579
DOI: 10.1016/j.csda.2019.106902
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().