EconPapers    
Economics at your fingertips  
 

Robust Bayesian small area estimation based on quantile regression

Enrico Fabrizi, Nicola Salvati and Carlo Trivisano

Computational Statistics & Data Analysis, 2020, vol. 145, issue C

Abstract: Quantile and M-quantile regression have been applied successfully to small area estimation within the frequentist approach. Quantile regression is applied in the same context but from a Bayesian perspective. Joint modelling of the quantile function is considered, adopting a non parametric assumption on the data generating process that nonetheless explicitly includes the normal distribution as a special case. A specification of the random part of the model that is simple and consistent with the predictive aim of small area estimation is proposed. Although the main output of the method is the estimation of the whole quantile function, estimators of the small area means based on the integration of the quantile function are proposed and discussed. A simulation exercise is used to assess the frequentist properties of these proposed predictors, that result at least as efficient as frequentist small area estimators based on quantile regression in scenarios characterized by the presence of outliers. The proposed method is illustrated using data from the European survey on Income and Living Conditions (EU-SILC).

Keywords: Bayesian non-parametrics; Dirichlet process priors; Quantile function; Survey data; Frequentist properties of Bayesian methods (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319302555
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:145:y:2020:i:c:s0167947319302555

DOI: 10.1016/j.csda.2019.106900

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:csdana:v:145:y:2020:i:c:s0167947319302555