EconPapers    
Economics at your fingertips  
 

Logistic regression with missing covariates—Parameter estimation, model selection and prediction within a joint-modeling framework

Wei Jiang, Julie Josse and Marc Lavielle

Computational Statistics & Data Analysis, 2020, vol. 145, issue C

Abstract: Logistic regression is a common classification method in supervised learning. Surprisingly, there are very few solutions for performing logistic regression with missing values in the covariates. A complete approach based on a stochastic approximation version of the EM algorithm is proposed in order to perform statistical inference with missing values, including the estimation of the parameters and their variance, derivation of confidence intervals, and also a model selection procedure. The problem of prediction for new observations on a test set with missing covariate data is also tackled. Supported by a simulation study in which the method is compared to previous ones, it has proved to be computationally efficient, and has good coverage and variable selection properties. The approach is then illustrated on a dataset of severely traumatized patients from Paris hospitals by predicting the occurrence of hemorrhagic shock, a leading cause of early preventable death in severe trauma cases. The aim is to improve the current red flag procedure, a binary alert identifying patients with a high risk of severe hemorrhage. The method is implemented in the R package misaem.

Keywords: Incomplete data; Observed likelihood; Metropolis–Hastings; Public health (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319302622
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:145:y:2020:i:c:s0167947319302622

DOI: 10.1016/j.csda.2019.106907

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:145:y:2020:i:c:s0167947319302622