Weighted quantile regression in varying-coefficient model with longitudinal data
Fangzheng Lin,
Yanlin Tang and
Zhongyi Zhu
Computational Statistics & Data Analysis, 2020, vol. 145, issue C
Abstract:
A weighted approach is developed to improve estimation efficiency in varying-coefficient quantile regression model, with longitudinal data. The weights are obtained from empirical likelihood of varying-coefficient mean model, where the nonparametric functions are approximated by basis splines, and the matrix expansion idea in quadratic inference function method is used, to model the inverse of conditional correlation matrix within subject. Theoretical results show that, the weighted estimators of the varying coefficients in quantile regression, can achieve higher efficiency than conventional estimators without weighting scheme. Simulation studies are used to assess the finite sample performance and a real data analysis is also conducted.
Keywords: Empirical likelihood; Longitudinal data analysis; Quadratic inference function; Spline approximation; Varying-coefficient quantile regression (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320300062
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:145:y:2020:i:c:s0167947320300062
DOI: 10.1016/j.csda.2020.106915
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().