Design optimal sampling plans for functional regression models
Hyungmin Rha,
Ming-Hung Kao and
Rong Pan
Computational Statistics & Data Analysis, 2020, vol. 146, issue C
Abstract:
Functional regression models are widely considered in practice. To make a precise statistical inference, a good sampling schedule for collecting informative functional data is needed. However, there has not been much research on the optimal sampling schedule design for functional regression model so far. To address this design issue, an efficient computational approach is proposed for generating the best sampling plan in the function-on-function linear regression setting. The obtained sampling plan allows a precise estimation of the predictor function and a precise prediction of the response function. The proposed approach can also be applied to identify the optimal sampling plan for the problem with scalar-on-function linear regression model. Through case studies, this approach is demonstrated to outperform the methods proposed in the previous studies.
Keywords: Functional data analysis; Functional linear model; Functional principal components; Longitudinal data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320300165
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:146:y:2020:i:c:s0167947320300165
DOI: 10.1016/j.csda.2020.106925
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().