Functional outlier detection and taxonomy by sequential transformations
Wenlin Dai,
Tomáš Mrkvička,
Ying Sun and
Marc G. Genton
Computational Statistics & Data Analysis, 2020, vol. 149, issue C
Abstract:
Functional data analysis can be seriously impaired by abnormal observations, which can be classified as either magnitude or shape outliers based on their way of deviating from the bulk of data. Identifying magnitude outliers is relatively easy, while detecting shape outliers is much more challenging. We propose turning the shape outliers into magnitude outliers through data transformation and detecting them using the functional boxplot. Besides easing the detection procedure, applying several transformations sequentially provides a reasonable taxonomy for the flagged outliers. A joint functional ranking, which consists of several transformations, is also defined here. Simulation studies are carried out to evaluate the performance of the proposed method using different functional depth notions. Interesting results are obtained in several practical applications.
Keywords: Data transformation; Functional boxplot; Magnitude outliers; Multivariate functional data; Shape outliers (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320300517
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:149:y:2020:i:c:s0167947320300517
DOI: 10.1016/j.csda.2020.106960
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().