EconPapers    
Economics at your fingertips  
 

Split sample empirical likelihood

Adam Jaeger and Nicole A. Lazar

Computational Statistics & Data Analysis, 2020, vol. 150, issue C

Abstract: Empirical likelihood offers a nonparametric approach to estimation and inference, which replaces the probability density-based likelihood function with a function defined by estimating equations. While this eliminates the need for a parametric specification, the restriction of numerical optimization greatly decreases the applicability of empirical likelihood for large data problems. A solution to this problem is the split sample empirical likelihood; this variant utilizes a divide and conquer approach, allowing for parallel computation of the empirical likelihood function. The results show the asymptotic distribution of the estimators and test statistics derived from the split sample empirical likelihood are the same seen in standard empirical likelihood yet have significantly decreased computational times.

Keywords: Parallel computing; Inference; Nonparametric methods; Parameter estimation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320300852
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320300852

DOI: 10.1016/j.csda.2020.106994

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320300852