Functional linear regression model with randomly censored data: Predicting conversion time to Alzheimer ’s disease
Seong J. Yang,
Hyejin Shin,
Sang Han Lee and
Seokho Lee
Computational Statistics & Data Analysis, 2020, vol. 150, issue C
Abstract:
Predicting the onset time of Alzheimer’s disease is of great importance in preventive medicine. Structural changes in brain regions have been actively investigated in the association study of Alzheimer’s disease diagnosis and prognosis. In this study, we propose a functional linear regression model to predict the conversion time to Alzheimer’s disease among mild cognitive impairment patients. Midsagittal thickness change in corpus callosum is measured from magnetic resonance imaging scan and put into the model as a functional covariate. A synthetic response approach is taken to deal with the censored data. The simulation studies demonstrate that the proposed model successfully predicts the unobserved true survival time but indicate that high censoring rate may cause poor prediction in time. Through ADNI data application, we find that the atrophy in the rear area of corpus callosum is a possible neuroimaging marker on Alzheimer’s disease prognosis.
Keywords: Alzheimer’s disease; Censored data; Functional regression; Magnetic resonance imaging; Reproducing kernel Hilbert space (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320301006
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320301006
DOI: 10.1016/j.csda.2020.107009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().