Superiority of Bayes estimators over the MLE in high dimensional multinomial models and its implication for nonparametric Bayes theory
Rabi Bhattacharya and
Rachel Oliver
Computational Statistics & Data Analysis, 2020, vol. 150, issue C
Abstract:
The performance of Bayes estimators is examined, in comparison with the MLE, in multinomial models with a relatively large number of cells. The prior for the Bayes estimator is taken to be the conjugate Dirichlet, i.e., the multivariate Beta, with exchangeable distributions over the coordinates, including the non-informative uniform distribution. The choice of the multinomial is motivated by its many applications in business and industry, but also by its use in providing a simple nonparametric estimator of an unknown distribution. It is striking that the Bayes procedure outperforms the asymptotically efficient MLE over most of the parameter spaces for even moderately large dimensional parameter spaces and rather large sample sizes.
Keywords: High dimensional multinomials; Bayes estimators versus the MLE; Nonparametric Bayes (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794732030102X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:150:y:2020:i:c:s016794732030102x
DOI: 10.1016/j.csda.2020.107011
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().