EconPapers    
Economics at your fingertips  
 

Joint analysis of semicontinuous data with latent variables

Xiaoqing Wang, Xiangnan Feng and Xinyuan Song

Computational Statistics & Data Analysis, 2020, vol. 151, issue C

Abstract: A two-part latent variable model is proposed to analyze semicontinuous data in the presence of latent variables. The proposed model comprises two major components. The first component is a structural equation model (SEM), which characterizes latent variables using corresponding multiple attributes and examines the interrelationships among them. The second component is a two-part model to assess a semicontinuous response of interest. The semicontinuous variable is characterized by a mixture of zero values and continuously distributed positive values. The two-part model manages this semicontinuous variable by splitting it into two random variables; one is a binary indicator to determine whether the response is zero, another is a continuous variable to determine the actual level of the positive response. A full Bayesian approach coupled with spike-and-slab lasso prior is developed for simultaneous variable selection and parameter estimation. The proposed methodology is demonstrated by a simulation study and applied to the analysis of the Chinese General Social Survey dataset. New insights into the interrelationships among non-cognitive ability, education level, and annual income are obtained.

Keywords: Latent variables; Semicontinuous data; Two-part model; Spike-and-slab lasso; MCMC methods (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320300967
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:151:y:2020:i:c:s0167947320300967

DOI: 10.1016/j.csda.2020.107005

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:151:y:2020:i:c:s0167947320300967