EconPapers    
Economics at your fingertips  
 

Model averaging assisted sufficient dimension reduction

Fang Fang and Zhou Yu

Computational Statistics & Data Analysis, 2020, vol. 152, issue C

Abstract: Sufficient dimension reduction that replaces original predictors with their low- dimensional linear combinations without loss of information is a critical tool in modern statistics and has gained considerable research momentum in the past decades since the two pioneers sliced inverse regression and principal Hessian directions. The classical sufficient dimension reduction methods do not handle sparse case well since the estimated linear reductions involve all of the original predictors. Sparse sufficient dimension reduction methods rely on sparsity assumption which may not be true in practice. Motivated by the least squares formulation of the classical sliced inverse regression and principal Hessian directions, several model averaging assisted sufficient dimension reduction methods are proposed. They are applicable to both dense and sparse cases even with weak signals since model averaging adaptively assigns weights to different candidate models. Based on the model averaging assisted sufficient dimension reduction methods, how to estimate the structural dimension is further studied. Theoretical justifications are given and empirical results show that the proposed methods compare favorably with the classical sufficient dimension reduction methods and popular sparse sufficient dimension reduction methods.

Keywords: Jackknife model averaging; Ladle estimator; Mallows model averaging; Principal Hessian directions; Sliced inverse regression; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320300840
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320300840

DOI: 10.1016/j.csda.2020.106993

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320300840