Inference for a generalised stochastic block model with unknown number of blocks and non-conjugate edge models
Matthew Ludkin
Computational Statistics & Data Analysis, 2020, vol. 152, issue C
Abstract:
The stochastic block model (SBM) is a popular model for capturing community structure and interaction within a network. Network data with non-Boolean edge weights is becoming commonplace; however, existing analysis methods convert such data to a binary representation to apply the SBM, leading to a loss of information. A generalisation of the SBM is considered, which allows edge weights to be modelled in their recorded state. An effective reversible jump Markov chain Monte Carlo sampler is proposed for estimating the parameters and the number of blocks for this generalised SBM. The methodology permits non-conjugate distributions for edge weights, which enable more flexible modelling than current methods as illustrated on synthetic data, a network of brain activity and an email communication network.
Keywords: Network; Stochastic block model; Statistical analysis of network data; Non-conjugate analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320301420
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320301420
DOI: 10.1016/j.csda.2020.107051
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().