EconPapers    
Economics at your fingertips  
 

Semiparametric estimation for linear regression with symmetric errors

Chew-Seng Chee and Byungtae Seo

Computational Statistics & Data Analysis, 2020, vol. 152, issue C

Abstract: To avoid the effect of distributional misspecification in the model-based regression, we propose an essentially nonparametric symmetric error distribution and construct a so-called doubly smoothed (DS) likelihood function by applying the same amount of smoothing to both the model and given data. To compute the DS maximum likelihood estimator based on the DS likelihood, we propose an approximated DS likelihood which has the form of a semiparametric mixture likelihood and apply some existing algorithms in the nonparametric mixture literature. The consistency of the DS maximum likelihood estimator is also established with any fixed smoothing parameter. Through numerical studies, we demonstrate that the proposed regression coefficient estimator has relatively good performance in terms of efficiency across a wide range of error distributions and robustness against outliers.

Keywords: Doubly smoothed likelihood method; Robust estimators; Semiparametric mixture models; Symmetric regression errors (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320301444
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320301444

DOI: 10.1016/j.csda.2020.107053

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320301444