Semiparametric estimation for linear regression with symmetric errors
Chew-Seng Chee and
Byungtae Seo
Computational Statistics & Data Analysis, 2020, vol. 152, issue C
Abstract:
To avoid the effect of distributional misspecification in the model-based regression, we propose an essentially nonparametric symmetric error distribution and construct a so-called doubly smoothed (DS) likelihood function by applying the same amount of smoothing to both the model and given data. To compute the DS maximum likelihood estimator based on the DS likelihood, we propose an approximated DS likelihood which has the form of a semiparametric mixture likelihood and apply some existing algorithms in the nonparametric mixture literature. The consistency of the DS maximum likelihood estimator is also established with any fixed smoothing parameter. Through numerical studies, we demonstrate that the proposed regression coefficient estimator has relatively good performance in terms of efficiency across a wide range of error distributions and robustness against outliers.
Keywords: Doubly smoothed likelihood method; Robust estimators; Semiparametric mixture models; Symmetric regression errors (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320301444
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320301444
DOI: 10.1016/j.csda.2020.107053
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().