Penalized logspline density estimation using total variation penalty
Kwan-Young Bak,
Jae-Hwan Jhong,
JungJun Lee,
Jae-Kyung Shin and
Ja-Yong Koo
Computational Statistics & Data Analysis, 2021, vol. 153, issue C
Abstract:
We study a penalized logspline density estimation method using a total variation penalty. The B-spline basis is adopted to approximate the logarithm of density functions. Total variation of derivatives of splines is penalized to impart a data-driven knot selection. The proposed estimator is a bona fide density function in the sense that it is positive and integrates to one. We devise an efficient coordinate descent algorithm for implementation and study its convergence property. An oracle inequality of the proposed estimator is established when the quality of fit is measured by the Kullback–Leibler divergence. Based on the oracle inequality, it is proved that the estimator achieves an optimal rate of convergence in the minimax sense. We also propose a logspline method for the bivariate case by adopting the tensor-product B-spline basis and a two-dimensional total variation type penalty. Numerical studies show that the proposed method captures local features without compromising the global smoothness.
Keywords: B-spline; Coordinate descent algorithm; Kullback–Leibler divergence; Optimal convergence rate; Oracle inequality (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320301511
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301511
DOI: 10.1016/j.csda.2020.107060
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().