An algorithm for non-parametric estimation in state–space models
Thi Tuyet Trang Chau,
Pierre Ailliot and
Valérie Monbet
Computational Statistics & Data Analysis, 2021, vol. 153, issue C
Abstract:
State–space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In most practical applications, the state–space model is specified through a parametric model. However, the specification of such a parametric model may require an important modeling effort or may lead to models which are not flexible enough to reproduce all the complexity of the phenomenon of interest. In such situations, an appealing alternative consists in inferring the state–space model directly from the data using a non-parametric framework. The recent developments of powerful simulation techniques have permitted to improve the statistical inference for parametric state–space models. It is proposed to combine two of these techniques, namely the Stochastic Expectation–Maximization (SEM) algorithm and Sequential Monte Carlo (SMC) approaches, for non-parametric estimation in state–space models. The performance of the proposed algorithm is assessed though simulations on toy models and an application to environmental data is discussed.
Keywords: State–space models; Non-parametric statistics; SEM algorithm; Local linear regression; Conditional particle filter (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320301535
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301535
DOI: 10.1016/j.csda.2020.107062
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().