Robust boosting for regression problems
Xiaomeng Ju and
Matías Salibián-Barrera
Computational Statistics & Data Analysis, 2021, vol. 153, issue C
Abstract:
Gradient boosting algorithms construct a regression predictor using a linear combination of “base learners”. Boosting also offers an approach to obtaining robust non-parametric regression estimators that are scalable to applications with many explanatory variables. The robust boosting algorithm is based on a two-stage approach, similar to what is done for robust linear regression: it first minimizes a robust residual scale estimator, and then improves it by optimizing a bounded loss function. Unlike previous robust boosting proposals this approach does not require computing an ad hoc residual scale estimator in each boosting iteration. Since the loss functions involved in this robust boosting algorithm are typically non-convex, a reliable initialization step is required, such as an L1 regression tree, which is also fast to compute. A robust variable importance measure can also be calculated via a permutation procedure. Thorough simulation studies and several data analyses show that, when no atypical observations are present, the robust boosting approach works as well as the standard gradient boosting with a squared loss. Furthermore, when the data contain outliers, the robust boosting estimator outperforms the alternatives in terms of prediction error and variable selection accuracy.
Keywords: Regression; Boosting; Robustness; Ensemble methods (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320301560
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301560
DOI: 10.1016/j.csda.2020.107065
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().