Two sample tests for high-dimensional autocovariances
Changryong Baek,
Katheleen M. Gates,
Benjamin Leinwand and
Vladas Pipiras
Computational Statistics & Data Analysis, 2021, vol. 153, issue C
Abstract:
The problem of testing for the equality of autocovariances of two independent high-dimensional time series is studied. Tests based on the suprema or sums of suitable averages across the dimensions are adapted from the available literature. Another test based on principal component analysis (PCA) is introduced and studied in theory. An extension is also considered to the setting of testing for the equality of autocovariances of two populations, having multiple individual high-dimensional series from the two populations. The proposed methodologies are assessed on simulated data, with the performance of the introduced PCA testing being superior overall. An application using fMRI data from individuals experiencing two different emotional states is provided.
Keywords: High-dimensional time series; Autocovariances; Block multiplier bootstrap; Dynamic factor models; Principal components; Hypothesis tests (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320301584
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301584
DOI: 10.1016/j.csda.2020.107067
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().