An adaptive decorrelation procedure for signal detection
Florian Hébert,
David Causeur and
Mathieu Emily
Computational Statistics & Data Analysis, 2021, vol. 153, issue C
Abstract:
In global testing, where a large number of pointwise test statistics are aggregated to simultaneously test for a collection of null hypotheses, the handling of dependence is a crucial issue. In various fields, more particularly in genetic epidemiology and functional data analysis, many testing methods for detecting an association signal between a response and explanatory variables have been proposed. Some aggregation procedures ignore dependence across pointwise test statistics whereas others introduce a model for decorrelation, with unclear conclusions on their relative performance. Indeed, the benefit that can be expected from decorrelation highly depends on the interplay between the structure of dependence across pointwise test statistics and the pattern of the association signal. Within a large class of test statistics covering a continuum of decorrelation approaches, an optimal procedure is introduced. This procedure is based on the maximization of an ad-hoc cumulant generating function-based distance between the null and nonnull distributions of a global test statistic, in order to adapt the aggregation of the pointwise statistics to the pattern of the association signal. A comparative study including simulations and applications to genetic association studies demonstrates that the ability of this test to detect a signal is more robust to the dependence structure than existing methods.
Keywords: Decorrelation; Dependent tests; Global testing; Signal detection (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320301730
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301730
DOI: 10.1016/j.csda.2020.107082
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().