EconPapers    
Economics at your fingertips  
 

Clustering for time-varying relational count data

Satoshi Goto, Mariko Takagishi and Hiroshi Yadohisa

Computational Statistics & Data Analysis, 2021, vol. 156, issue C

Abstract: Relational count data are often obtained from sources such as simultaneous purchase in online shops and social networking service information. Clustering such relational count data reveals the latent structure of the relationship between objects such as household items or people. When relational count data observed at multiple time points are available, it is worthwhile incorporating the time structure into the clustering result to understand how objects move between the clusters over time. In this paper, we propose two clustering methods for analyzing time-varying relational count data. The first model, the dynamic Poisson infinite relational model (dPIRM), handles time-varying relational count data. In the second model, which we call the dynamic zero-inflated Poisson infinite relational model, we further extend the dPIRM so that it can handle zero-inflated data. Proposing both two models is important as zero-inflated data are often encountered, especially when the time intervals are short. In addition, by explicitly deriving the relevant full conditional distributions, we describe the features of the estimated parameters and, in turn, the relationship between the two models. We show the effectiveness of both models through a simulation study and a real data example.

Keywords: Bayesian model; Clustering; Count data; Time-varying relational data; Zero-inflated poisson (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320302140
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:156:y:2021:i:c:s0167947320302140

DOI: 10.1016/j.csda.2020.107123

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:156:y:2021:i:c:s0167947320302140