A nonparametric empirical Bayes approach to large-scale multivariate regression
Yihe Wang and
Sihai Dave Zhao
Computational Statistics & Data Analysis, 2021, vol. 156, issue C
Abstract:
Multivariate regression has many applications, ranging from time series prediction to genomics. Borrowing information across the outcomes can improve prediction error, even when outcomes are statistically independent. Many methods exist to implement this strategy, for example the multiresponse lasso, but choosing the optimal method for a given dataset is difficult. These issues are addressed by establishing a connection between multivariate linear regression and compound decision problems. A nonparametric empirical Bayes procedure that can learn the optimal regression method from the data itself is proposed. Furthermore, the proposed procedure is free of tuning parameters and performs well in simulations and in a multiple stock price prediction problem.
Keywords: Compound decision; Multivariate regression; Nonparametric; Empirical Bayes (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320302218
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:156:y:2021:i:c:s0167947320302218
DOI: 10.1016/j.csda.2020.107130
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().