EconPapers    
Economics at your fingertips  
 

Support vector subset scan for spatial pattern detection

Dylan Fitzpatrick, Yun Ni and Daniel B. Neill

Computational Statistics & Data Analysis, 2021, vol. 157, issue C

Abstract: Discovery of localized and irregularly shaped anomalous patterns in spatial data provides useful context for operational decisions across many policy domains. The support vector subset scan (SVSS) integrates the penalized fast subset scan with a kernel support vector machine classifier to accurately detect spatial clusters without imposing hard constraints on the shape or size of the pattern. The method iterates between (1) efficiently maximizing a penalized log-likelihood ratio over subsets of locations to obtain an anomalous pattern, and (2) learning a high-dimensional decision boundary between locations included in and excluded from the anomalous subset. On each iteration, location-specific penalties to the log-likelihood ratio are assigned according to distance to the decision boundary, encouraging patterns which are spatially compact but potentially highly irregular in shape. SVSS outperforms competing methods for spatial cluster detection at the task of detecting randomly generated patterns in simulated experiments. SVSS enables discovery of practically-useful anomalous patterns for disease surveillance in Chicago, IL, crime hotspot detection in Portland, OR, and pothole cluster detection in Pittsburgh, PA, as demonstrated by experiments using publicly available data sets from these domains.

Keywords: Anomalous pattern detection; Machine learning; Spatial analysis; Subset scanning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320302401
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302401

DOI: 10.1016/j.csda.2020.107149

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302401