EconPapers    
Economics at your fingertips  
 

Variable selection in finite mixture of regression models with an unknown number of components

Kuo-Jung Lee, Martin Feldkircher and Yi-Chi Chen

Computational Statistics & Data Analysis, 2021, vol. 158, issue C

Abstract: A Bayesian framework for finite mixture models to deal with model selection and the selection of the number of mixture components simultaneously is presented. For that purpose, a feasible reversible jump Markov Chain Monte Carlo algorithm is proposed to model each component as a sparse regression model. This approach is made robust to outliers by using a prior that induces heavy tails and works well under multicollinearity and with high-dimensional data. Finally, the framework is applied to cross-sectional data investigating early warning indicators. The results reveal two distinct country groups for which estimated effects of vulnerability indicators vary considerably.

Keywords: Finite mixture of regression models; Bayesian variable selection; Unknown number of components; High-dimensional data; Financial crisis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000141
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000141

DOI: 10.1016/j.csda.2021.107180

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-07
Handle: RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000141