EconPapers    
Economics at your fingertips  
 

Mixture of linear experts model for censored data: A novel approach with scale-mixture of normal distributions

Elham Mirfarah, Mehrdad Naderi and Ding-Geng Chen

Computational Statistics & Data Analysis, 2021, vol. 158, issue C

Abstract: Mixture of linear experts (MoE) model is one of the widespread statistical frameworks for modeling, classification, and clustering of data. Built on the normality assumption of the error terms for mathematical and computational convenience, the classical MoE model has two challenges: (1) it is sensitive to atypical observations and outliers, and (2) it might produce misleading inferential results for censored data. The aim is then to resolve these two challenges, simultaneously, by proposing a robust MoE model for model-based clustering and discriminant censored data with the scale-mixture of normal (SMN) class of distributions for the unobserved error terms. An analytical expectation–maximization (EM) type algorithm is developed in order to obtain the maximum likelihood parameter estimates. Simulation studies are carried out to examine the performance, effectiveness, and robustness of the proposed methodology. Finally, a real dataset is used to illustrate the superiority of the new model.

Keywords: Mixture of linear experts model; Scale-mixture of normal class of distributions; EM-type algorithm; Censored data (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000165
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000165

DOI: 10.1016/j.csda.2021.107182

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000165