Explicit-duration Hidden Markov Models for quantum state estimation
Alessandra Luati and
Marco Novelli
Computational Statistics & Data Analysis, 2021, vol. 158, issue C
Abstract:
An explicit-duration Hidden Markov Model with a nonparametric kernel estimator of the state duration distribution is specified. The motivation comes from the physical problem of extracting the maximum information from an open quantum system subject to an external perturbation, which induces a change in the dynamics of the system. A nonparametric kernel estimator for discrete data is introduced, which is consistent and improves the estimates accuracy in presence of sparse data. To reconstruct the hidden dynamics, a Viterbi algorithm is used, which is robust against the underflow problem. Finite sample properties are investigated through an extensive Monte Carlo study showing that our formulation outperforms the original one both in small and in large samples.
Keywords: Hidden Markov Models; Forward–backward algorithm; Quantum statistics; Kernel estimation; Viterbi algorithm (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000177
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000177
DOI: 10.1016/j.csda.2021.107183
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().