Confidence intervals for spatial scan statistic
Ivair R. Silva,
Luiz Duczmal and
Martin Kulldorff
Computational Statistics & Data Analysis, 2021, vol. 158, issue C
Abstract:
The spatial scan statistic is a popular statistical tool to detect geographical clusters of diseases. The basic problem of constructing confidence intervals for the relative risk of the most likely cluster has remained an open question. To cover this lack, a Monte Carlo based interval estimator for the relative risk of the primary cluster is derived. The method works for the circular spatial scan statistic applied to binomial data, and it ensures, by construction, an analytical control of the coverage probability under the nominal confidence coefficient. In addition, its performance is illustrated on simulated and real data of birth defects in New York State.
Keywords: Relative risk; Monte Carlo; Coverage probability; Primary cluster (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000190
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000190
DOI: 10.1016/j.csda.2021.107185
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().