EconPapers    
Economics at your fingertips  
 

High dimensional regression for regenerative time-series: An application to road traffic modeling

Mohammed Bouchouia and François Portier

Computational Statistics & Data Analysis, 2021, vol. 158, issue C

Abstract: A statistical predictive model in which a high-dimensional time-series regenerates at the end of each day is used to model road traffic. Due to the regeneration, prediction is based on a daily modeling using a vector autoregressive model that combines linearly the past observations of the day. Due to the high-dimension, the learning algorithm follows from an ℓ1-penalization of the regression coefficients. Excess risk bounds are established under the high-dimensional framework in which the number of road sections goes to infinity with the number of observed days. Considering floating car data observed in an urban area, the approach is compared to state-of-the-art methods including neural networks. In addition of being highly competitive in terms of prediction, it enables the identification of the most determinant sections of the road network.

Keywords: Vector autoregressive model; Lasso; Regenerative process; Road traffic prediction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000256
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000256

DOI: 10.1016/j.csda.2021.107191

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000256