A new class of stochastic EM algorithms. Escaping local maxima and handling intractable sampling
Stéphanie Allassonnière and
Juliette Chevallier
Computational Statistics & Data Analysis, 2021, vol. 159, issue C
Abstract:
The expectation–maximization (EM) algorithm is a powerful computational technique for maximum likelihood estimation in incomplete data models. When the expectation step cannot be performed in closed form, a stochastic approximation of EM (SAEM) can be used. The convergence of the SAEM toward critical points of the observed likelihood has been proved and its numerical efficiency has been demonstrated. However, sampling from the posterior distribution may be intractable or have a high computational cost. Moreover, despite appealing features, the limit position of this algorithm can strongly depend on its starting one. Sampling from an approximation of the distribution in the expectation phase of the SAEM allows coping with these two issues. This new procedure is referred to as approximated-SAEM and is proved to converge toward critical points of the observed likelihood. Experiments on synthetic and real data highlight the performance of this algorithm in comparison to the SAEM and the EM when feasible.
Keywords: EM-like algorithm; Stochastic approximation; Stochastic optimization; Tempered distribution; Theoretical convergence (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947320302504
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:159:y:2021:i:c:s0167947320302504
DOI: 10.1016/j.csda.2020.107159
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().