Subgroup causal effect identification and estimation via matching tree
Yuyang Zhang,
Patrick Schnell,
Chi Song,
Bin Huang and
Bo Lu
Computational Statistics & Data Analysis, 2021, vol. 159, issue C
Abstract:
Inferring causal effect from observational studies is a central topic in many scientific fields, including social science, health and medicine. The statistical methodology for estimating population average causal effect has been well established. However, the methods for identifying and estimating subpopulation causal effects are relatively less developed. Part of the challenge is that the subgroup structure is usually unknown, therefore, methods working well for population level effect need to be modified to address this. A tree method based on a matched design is proposed to identify subgroups with differential treatment effects. To remove observed confounding, propensity-score-matched pairs are first created. Then the classification and regression tree is applied to the within-pair outcome differences to identify the subgroup structure. This nonparametric approach is robust to model misspecification, which is important because it becomes much harder to specify a parametric outcome model in the presence of subgroup effects. In addition to describing assumptions under which our matching estimator is unbiased, algorithms for identifying subgroup structures are provided. Simulation results indicate that the proposed approach compares favorably, in terms of the percentage of correctly identifying true tree structure, with other competing tree-based methods, including causal trees, causal inference trees and the virtual twins approach. Finally the proposed method is implemented to examine the potential subgroup effect of the timing of Tobramycin use on chronic infection among pediatric Cystic Fibrosis patients.
Keywords: Potential outcomes; Propensity score; Matched design; Classification and regression tree; Virtual twins (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000220
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:159:y:2021:i:c:s0167947321000220
DOI: 10.1016/j.csda.2021.107188
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().