Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables
Sebastian Fuchs,
F. Marta L. Di Lascio and
Fabrizio Durante
Computational Statistics & Data Analysis, 2021, vol. 159, issue C
Abstract:
A theoretical framework is presented for a (copula-based) notion of dissimilarity between continuous random vectors and its main properties are studied. The proposed dissimilarity assigns the smallest value to a pair of random vectors that are comonotonic. Various properties of this dissimilarity are studied, with special attention to those that are prone to the hierarchical agglomerative methods, such as reducibility. Some insights are provided for the use of such a measure in clustering algorithms and a simulation study is presented. Real case studies illustrate the main features of the whole methodology.
Keywords: Comonotonicity; Copula; Cluster analysis; Dissimilarity; Stochastic dependence (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000359
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:159:y:2021:i:c:s0167947321000359
DOI: 10.1016/j.csda.2021.107201
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().