EconPapers    
Economics at your fingertips  
 

Tests for differential Gaussian Bayesian networks based on quadratic inference functions

Xianzheng Huang and Hongmei Zhang

Computational Statistics & Data Analysis, 2021, vol. 159, issue C

Abstract: Hypotheses testing procedures based on quadratic inference functions are proposed to test whether two Gaussian Bayesian networks are differential in structure, strength of associations between nodes, or both. Bootstrap procedures are developed to estimate p-values to quantify the statistical significance of the tests. Operating characteristics of these testing procedures are investigated using synthetic data in simulation experiments. Additionally, the proposed methods are applied to flow cytometry data from a designed experiment, and data of bile acids from an observational study in the Alzheimer’s Disease Neuroimaging Initiative.

Keywords: Directed acyclic graph; Information criterion; Pair bootstrap; Topological ordering; Wild bootstrap (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000438
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:159:y:2021:i:c:s0167947321000438

DOI: 10.1016/j.csda.2021.107209

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:159:y:2021:i:c:s0167947321000438