Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random
Yuting Wei,
Qihua Wang,
Xiaogang Duan and
Jing Qin
Computational Statistics & Data Analysis, 2021, vol. 160, issue C
Abstract:
A model selection problem for the conditional probability function of the response variable Y given the covariable vector (X,Z) is considered under the case where X is missing at random. And two novel model selection criteria are suggested. It is shown that the model selection by these two criteria is consistent and that the population parameter estimators, corresponding to the selected model, are also consistent and asymptotically normal. Extensive simulation studies are conducted to investigate the finite-sample performances of the proposed two criteria and a thorough comparison is made with some related model selection strategies. Moreover, two real data analyses are presented for illustrating the practical application of the proposed two criteria.
Keywords: Pseudo empirical likelihood; Missing covariates; Bias correction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794732100058X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:160:y:2021:i:c:s016794732100058x
DOI: 10.1016/j.csda.2021.107224
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().