Economics at your fingertips  

A Bayesian semiparametric vector Multiplicative Error Model

Nicola Donelli, Stefano Peluso and Antonietta Mira

Computational Statistics & Data Analysis, 2021, vol. 161, issue C

Abstract: Interactions among multiple time series of positive random variables are crucial in diverse financial applications, from spillover effects to volatility interdependence. A popular model in this setting is the vector Multiplicative Error Model (vMEM) which poses a linear iterative structure on the dynamics of the conditional mean, perturbed by a multiplicative innovation term. A main limitation of vMEM is however its restrictive assumption on the distribution of the random innovation term. A Bayesian semiparametric approach that models the innovation vector as an infinite location-scale mixture of multidimensional kernels with support on the positive orthant is used to address this major shortcoming of vMEM. Computational complications arising from the constraints to the positive orthant are avoided through the formulation of a slice sampler on the parameter-extended unconstrained version of the model. The method is applied to simulated and real data and a flexible specification is obtained that outperforms the classical ones in terms of fitting and predictive power.

Keywords: Bayesian nonparametrics; Multiplicative Error Model; Parameter-extended Gibbs sampler (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.csda.2021.107242

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2022-07-30
Handle: RePEc:eee:csdana:v:161:y:2021:i:c:s0167947321000761