Testing the first-order separability hypothesis for spatio-temporal point patterns
Mohammad Ghorbani,
Nafiseh Vafaei,
Jiří Dvořák and
Mari Myllymäki
Computational Statistics & Data Analysis, 2021, vol. 161, issue C
Abstract:
First-order separability of a spatio-temporal point process plays a fundamental role in the analysis of spatio-temporal point pattern data. While it is often a convenient assumption that simplifies the analysis greatly, existing non-separable structures should be accounted for in the model construction. Three different tests are proposed to investigate this hypothesis as a step of preliminary data analysis. The first two tests are exact or asymptotically exact for Poisson processes. The first test based on permutations and global envelopes allows one to detect at which spatial and temporal locations or lags the data deviate from the null hypothesis. The second test is a simple and computationally cheap χ2-test. The third test is based on stochastic reconstruction method and can be generally applied for non-Poisson processes. The performance of the first two tests is studied in a simulation study for Poisson and non-Poisson models. The third test is applied to the real data of the UK 2001 epidemic foot and mouth disease.1
Keywords: Global envelope; Log Gaussian Cox processes; Kernel estimation; Permutation; Separability of intensity function; Stochastic reconstruction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000797
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:161:y:2021:i:c:s0167947321000797
DOI: 10.1016/j.csda.2021.107245
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().