Generalized accelerated hazards mixture cure models with interval-censored data
Xiaoyu Liu and
Liming Xiang
Computational Statistics & Data Analysis, 2021, vol. 161, issue C
Abstract:
Existing semiparametric mixture cure models with interval-censored data often assume a survival model, such as the Cox proportional hazards model, proportional odds model, accelerated failure time model, or their transformations for the susceptible subjects. There are cases in practice that such conventional assumptions may be inappropriate for modeling survival outcomes of susceptible subjects. We propose a more flexible class of generalized accelerated hazards mixture cure models for analysis of interval-censored failure times in the presence of a cure fraction. We develop a sieve maximum likelihood estimation in which the unknown cumulative baseline hazard function is approximated by means of B-splines and bundled with regression parameters. The proposed estimator possesses the properties of consistency and asymptotic normality, and can achieve the optimal global convergence rate under some conditions. Simulation results demonstrate that the proposed estimator performs satisfactorily in finite samples. The application of the proposed method is illustrated by the analysis of smoking cessation data from a lung health study.
Keywords: Bundled regression parameter; Generalized accelerated hazards model; Interval-censoring; Cure model; Sieve maximum likelihood; Splines (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000827
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:161:y:2021:i:c:s0167947321000827
DOI: 10.1016/j.csda.2021.107248
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().