Communication-efficient distributed M-estimation with missing data
Jianwei Shi,
Guoyou Qin,
Huichen Zhu and
Zhongyi Zhu
Computational Statistics & Data Analysis, 2021, vol. 161, issue C
Abstract:
In the big data era, practical applications often encounter incomplete data. Current distributed methods, ignoring missingness, may cause inconsistent estimates. Motivated by that, a distributed algorithm is developed for M-estimation with missing data. The proposed algorithm is communication-efficient, where only gradient information is transferred to the central machine. The parameters of interest and the nuisance parameters are simultaneously updated. Theoretically, it is shown that the proposed algorithm achieves a full sample performance after a moderate number of iterations. The influence of nuisance parameters on distributed M-estimation is also investigated. Simulations via synthetic data illustrate the effectiveness of the algorithm. At last, the algorithm is applied to a real data set.
Keywords: Distributed estimation; M-estimation; Missing data; Inverse probability weighting (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321000852
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:161:y:2021:i:c:s0167947321000852
DOI: 10.1016/j.csda.2021.107251
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().