EconPapers    
Economics at your fingertips  
 

Assessing the effective sample size for large spatial datasets: A block likelihood approach

Jonathan Acosta, Alfredo Alegría, Felipe Osorio and Ronny Vallejos

Computational Statistics & Data Analysis, 2021, vol. 162, issue C

Abstract: The development of new techniques for sample size reduction has attracted growing interest in recent decades. Recent findings allow us to quantify the amount of duplicated information within a sample of spatial data through the so-called effective sample size (ESS), whose definition arises from the Fisher information that is associated with maximum likelihood estimation. However, in all circumstances where the sample size is very large, maximum likelihood estimation and ESS evaluation are challenging from a computational viewpoint. An alternative definition of the ESS, in terms of the Godambe information from a block likelihood estimation approach, is presented. Several theoretical properties satisfied by this quantity are investigated. Our proposal is evaluated in some parametric correlation structures, including the intraclass, AR(1), Matérn, and simultaneous autoregressive models. Simulation experiments show that our proposal provides accurate approximations of the full likelihood-based ESS while maintaining a moderate computational cost. A large dataset is analyzed to quantify the effectiveness and limitations of the proposed framework in practice.

Keywords: Covariance function; Fisher information; Godambe information; Matérn model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794732100116X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:162:y:2021:i:c:s016794732100116x

DOI: 10.1016/j.csda.2021.107282

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:162:y:2021:i:c:s016794732100116x