On efficient exact experimental designs for ordered treatments
Satya Prakash Singh and
Ori Davidov
Computational Statistics & Data Analysis, 2021, vol. 164, issue C
Abstract:
In a recent paper Singh and Davidov (2019) derive approximate optimal designs for experiments with ordered treatments. Specifically, maxi–min and intersection–union designs were explored. These designs, which address different types of hypothesis testing problems, provide a substantial improvement over standard designs in terms of power, or equivalently, sample size requirements. In practice however, exact, not approximate designs are used. Therefore, in this paper, we develop methods for finding efficient exact designs for the testing problems considered in Singh and Davidov (2019). The proposed designs are compared numerically to some well known existing designs and it is shown that the new designs require fewer experimental units to attain prespecified power. A thorough sensitivity analysis shows that the proposed designs are robust against possible misspecification of the parameters under the alternative and the order relation among the treatment groups.
Keywords: Efficient exact designs; Intersection Union Tests; Likelihood ratio test; Order restricted inference; Rounding methods; Sensitivity analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321001390
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:164:y:2021:i:c:s0167947321001390
DOI: 10.1016/j.csda.2021.107305
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().