Inference for partially observed epidemic dynamics guided by Kalman filtering techniques
Romain Narci,
Maud Delattre,
Catherine Larédo and
Elisabeta Vergu
Computational Statistics & Data Analysis, 2021, vol. 164, issue C
Abstract:
Despite the recent development of methods dealing with partially observed epidemic dynamics (unobserved model coordinates, discrete and noisy outbreak data), limitations remain in practice, mainly related to the quantity of augmented data and calibration of numerous tuning parameters. In particular, as coordinates of dynamic epidemic models are coupled, the presence of unobserved coordinates leads to a statistically difficult problem. The aim is to propose an easy-to-use and general inference method that is able to tackle these issues. First, using the properties of epidemics in large populations, a two-layer model is constructed. Via a diffusion-based approach, a Gaussian approximation of the epidemic density-dependent Markovian jump process is obtained, representing the state model. The observational model, consisting of noisy observations of certain model coordinates, is approximated by Gaussian distributions. Then, an inference method based on an approximate likelihood using Kalman filtering recursion is developed to estimate parameters of both the state and observational models. The performance of estimators of key model parameters is assessed on simulated data of SIR epidemic dynamics for different scenarios with respect to the population size and the number of observations. This performance is compared with that obtained using the well-known maximum iterated filtering method. Finally, the inference method is applied to a real data set on an influenza outbreak in a British boarding school in 1978.
Keywords: Approximate maximum likelihood; Diffusion approach; Kalman filter; Measurement errors; Partially-observed Markov process; Epidemic dynamics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321001535
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:164:y:2021:i:c:s0167947321001535
DOI: 10.1016/j.csda.2021.107319
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().