EconPapers    
Economics at your fingertips  
 

Model-based sparse coding beyond Gaussian independent model

Xin Xing, Rui Xie and Wenxuan Zhong

Computational Statistics & Data Analysis, 2022, vol. 166, issue C

Abstract: Sparse coding aims to model data vectors as sparse linear combinations of basis elements, but a majority of related studies are restricted to continuous data without spatial or temporal structure. A new model-based sparse coding (MSC) method is proposed to provide an effective and flexible framework for learning features from different data types: continuous, discrete, or categorical, and modeling different types of correlations: spatial or temporal. The specification of the sparsity level and how to adapt the estimation method to large-scale studies are also addressed. A fast EM algorithm is proposed for estimation, and its superior performance is demonstrated in simulation and multiple real applications such as image denoising, brain connectivity study, and spatial transcriptomic imaging.

Keywords: Fast EM algorithm; Probabilistic model; Sparse coding (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321001705
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:166:y:2022:i:c:s0167947321001705

DOI: 10.1016/j.csda.2021.107336

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:166:y:2022:i:c:s0167947321001705