Bayesian beta regression for bounded responses with unknown supports
Haiming Zhou and
Xianzheng Huang
Computational Statistics & Data Analysis, 2022, vol. 167, issue C
Abstract:
A new Bayesian regression framework is presented for the analysis of continuous response data with support restricted to an unknown finite interval. A four-parameter beta distribution is assumed for the response conditioning on covariates, with the mean or mode depending linearly on covariates through a known link function. An informative g-prior is proposed to incorporate the prior distribution for the marginal mean or mode of the response. Byproducts of the Markov chain Monte Carlo sampling for implementing the proposed method lead to model criteria useful for model selection. Goodness-of-fit of the model is assessed using Cox-Snell residual plots. The methodology is illustrated in simulations and demonstrated in two real-life data applications. An R package, betaBayes, is developed for easy implementation of the proposed regression methodology.
Keywords: Four-parameter beta distribution; g-Prior; Mean; Mode; Model criterion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321001791
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321001791
DOI: 10.1016/j.csda.2021.107345
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().